
Deliverable D2.2.

Accompanying document for the µDevOps
learning engine package

May 2022

1 Scope

This is the accompanying document of Deliverable D2.2 of the µDevOps
project entitled, “The µDevOps learning engine package”. The type of the
deliverable is marked as Other, and includes software artifacts along with this
accompanying document. The delivered artifacts are also made available at the
following GitHub repository:
https://github.com/uDEVOPS2020/ContextLearning

and at the linked Zenodo repository:
https://doi.org/10.5281/zenodo.6628321, indexed by OpenAIRE

2 Introduction

This document describes the learning engine artifact. The artifact imple-
ments the context learning feature of the testing process outlined in the project,
which is paramount to support Software Quality Assurance (SQA) activities
in Microservice DevOps. Specifically, this document reports about the context
learning functionalities developed in the context of the project, along with im-
plementation details. Instructions are provided for using the learning function-
alities and reproducing the use cases we have developed for illustrative purpose.
The artifact will be extended during the project, as the Consortium will advance
with the WP3, WP4 and WP5.

3 The learning engine

Figure 1 gives an overview of the context in which the learning engine can be
used. The engine takes data gathered from monitoring and a specification of the
decision (i.e., the SQA objective) to pursue. Based on this, the proper learning
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Figure 1: Context of use for the µDevOps learning engine.

algorithm is used, with associated pre-processing steps when needed, and gives,
as output, the prediction supporting that decision. The boxes highlighted red
represent the SQA activities it supports.

The engine customizes the implementation of a conventional machine learn-
ing workflow for the purpose of supporting the SQA decisions. It exploits open
source libraries that implement machine learning and causal inference algo-
rithms. The following Section describes the learning functionalities through a
set of use cases implemented in the project.

The artifact is not meant to interact directly with the end user (it will be
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part of the proof of concept foreseen in WP5 and, as such, will act as a library
called by other components of the proof of concept); however, the code provided
with Deliverable 2.2 has a minimal form of interaction with the user, allowing
him/her to load data, ask for the desired processing, and retrieve the result.

The context learning functionalities are described in the following, with re-
spect to the supported SQA activities of Figure 1; these are especially rel-
evant for engineering Microservice Archicteture (MSA) applications in a De-
vOps environment. They are about: (Regression) Testing, Performance-related
causal structure discovery in a Microservice Architecture, Energy consumption
anomaly detection and root cause analysis, Just-in-time software defect predic-
tion. In the following, we first describe the functionality, then a use case we
implemented for each of them.

3.1 Functionality 1: Test case prioritization via Learning-
to-rank techniques

• Description. The objective of this functionality is to support test pri-
oritization in an MSA, namely: given a list of tests to run, the goal is
to run first the ones more likely to expose failures. Prioritization is done
by applying machine learning (learning-to-rank) algorithms to features of
request/response and/or of the invoked Microservice that correlate more
with quality metrics, such as performance (e.g., response time), reliability
(e.g., status code) or coverage. The feedback allows for prioritizing test
cases. The tests can be already given, or can be generated automatically
by the testing tool we are developing in the context of this project, called
uTest1, starting from the API specification of the microservices under
test.

• Source of information: Execution traces of previously executed testing
sessions, or resulting from monitoring of the application during operation.

• Metrics: The metrics used as features of the test cases are:

– testID

– HTTP status code

– Response Time

– URL

– HTTP method

– Input Class 1 | ... | Input Class N |

Response Time and status code are both considered as objectives to prior-
itize the tests (namely, we want to run first those tests with failing status
code and high response time). The ranking score is computed as follows:

ranking score = response code+
1

response time
× 100 (1)

1https://github.com/uDEVOPS2020/uTest
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The response codes higher than or equal to 400 correspond to failed tests;
at the same time, a lower response time implies a higher priority of the
test. As result, the higher the value of the ranking score, the higher the
priority of the considered test.

• Modeled facet: Behavioural, Failing behaviour

• Type of model(s): Learning-to-rank algorithm

• Learning algorithm used: Learning-to-rank (classification/regression)
algorithms included in the open source RankLib library2:

– MART (Multiple Additive Regression Trees, a.k.a. Gradient boosted
regression tree)

– RankNet

– RankBoost

– AdaRank

– Coordinate Ascent

– LambdaMART

– ListNet

– Random Forests

• Decision support category: Fault avoidance

• Decision support about: what regression tests to run first in order to
support early fault detection.

3.2 Functionality 2: Performance-related causal structure
discovery in a Microservice Architecture

• Description. The objective of this functionality is to characterize the
cause-effect relationships in a Microservice Architecture (MSA) in terms
of performance, measured as response time. It allows for identifying
performance-related dependencies that can complement the behavioural
dependencies information, inferred for instance from the methods call, in
order to figure out to what extent the performance variation of a microser-
vice impacts performance of another microservice. The analysis allows for
discovering hidden cause-effect relations between microservices, useful for
design (e.g., load balancing, architectural decisions) and testing purposes
(e.g., focus more on microservices found to be a performance bottleneck).

• Source of information: Execution traces of previously executed testing
sessions, or resulting from monitoring of the application during operation.

2Dang, V. “The Lemur Project-Wiki-RankLib.” Lemur Project,[Online]. Available: http:
//sourceforge.net/p/lemur/wiki/RankLib.

4

http://sourceforge. net/p/lemur/wiki/RankLib.
http://sourceforge. net/p/lemur/wiki/RankLib.


• Metrics: The metrics used the observed response times of each microser-
vices

• Modeled facet: Architectural, Failing behaviour

• Type of model(s): Causal structure discovery algorithm for time series.

• Learning algorithm used: Causal structure discovery algorithms, in-
cluded in the open source Tetrad library 3

– Lingam

– PC

– FGES

– GFCI

– RFCI

• Decision support category: Fault avoidance, Fault removal

• Decision support about: testing (e.g., focus more testing effort on mi-
croservice more causally-related to edge or critical microservice), load bal-
ancing, deployment/architectural decisions, root cause analysis of perfor-
mance issues.

3.3 Functionality 3: Energy consumption anomaly detec-
tion and root cause analysis

• Description. The objective of this functionality is to support QA activi-
ties pertaining the detection and diagnosis of anomalous energy consump-
tion: given an operating MSA, the goal is to identify those microservices
whose energy consumption is higher than expected in a given execution
scenario (energy hotspots detection) and then identify the microservice
contributing more to it.

This is done by applying statistical techniques on time series containing
metrics of interest correlated with energy consumption.

• Source of information: Execution traces of previously executed testing
sessions, or resulting from monitoring of the application during operation.

• Metrics: We use, as proxy of energy consumption metrics, CPU and
memory consumption at container level. Note that while the availability
of measurements of physical energy consumption (via hardware devices)
does not affect the implementation of the functionality, it will indeed im-
prove the accuracy of the final result. This will be investigated during the
project.

• Modeled facet: Architectural, Failing behaviour

3https://github.com/cmu-phil/tetrad
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• Type of model(s): forecast-based time series models for anomaly detec-
tion, causal models for root cause analysis.

• Learning algorithm used:

– Forecast-based methods for anomaly detection (e.g., STL, GESD,
IQR, Twitter), followed by multivariate transfer entropy (MuTE) to
spot the most impacting containers. The algorithms are included in
open source libraries 4

• Decision support category: Fault removal, QA Activities

• Decision support about: Energy hotspots detection, Diagnosis, RCA,
deployment.

3.4 Functionality 4: Just-In-Time Defect Prediction

• Description. The objective of this functionality is to support the early
identification of commits more likely to introduce defects, namely: given
an application developed in a continuous integration/DevOps setting (hence
with frequent commits), the goal is to alert on those commits more likely
to introduce a defect in the deployed code and to identify the metrics more
stable and relevant for the prediction. This is done by applying just-in-
time (JIT) prediction enriched with the feature stability score computa-
tion.

Source of information: Source code, commits

• Metrics: Git commit metrics, such as Number of modified subsystems,
Number of modified directories, Number of modified files, Entropy, Lines
of code added, Lines of code deleted, Lines of code in a file before the
change, Whether or not the change is a defect fix

• Modeled facet: Failing behaviour

• Type of model(s): Classification

• Learning algorithm used: Random Forest, Logistic Regression

• Decision support category: Fault prediction

• Decision support about: Test/QA effort allocation, fault tolerance. Se-
lection of features that act as best predictors (in terms of accuracy and
stability)

4The anomalize R package, available at: https://cran.r-project.org/web/packages/anomalize/,
and the IDTxl toolkit for transfer entropy, available at
https://github.com/pwollstadt/IDTxl
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4 Content of the package and implementation
details

The package contains the code implementing the above-mentioned four func-
tionalities along with the datasets and code to illustrate their usage.

4.1 Use Case for functionality 1

The “use case 1” folder of the delivered package contains the dataset and code
to reproduce the test prioritization example we have used to test the feasibility
of the strategy:
Dataset. testFeatures.csv. This is the dataset used as illustrative example
for this use case. It is derived by running a load on a well-known open-source
benchmark for microservice architecture (MSA), named Train Ticket 5. The ap-
plication simulates a train ticket booking system, composed of 41 microservices
communicating to each other via REST over HTTP. Train ticket is polyglot
(e.g., Java, golang, Node.js, etc).

Workload generation. The dataset is automatically generated with a teseting
tool we are developing in the context of the project’s WP2, called uTest6. The
tool generates tests starting from microservices’ OpenAPI specifications. Con-
figured in pairwise mode, the tool generated 4690 test cases by a combinatorial
testing strategy.

The so-obtained dataset has the following columns:

testID | HTTP status code | Response Time | URL | HTTP method | Input

Class 1 | ... | Input Class N |

Each row represents an executed test.
Training and test sets generator. The training and test sets are generated

through the csv parsing.py script. The datasets are encoded in the format
required by RankLib to perform the training and the prioritization.

Prioritization. Response Time and status code are both considered to perform
the prioritization. The ranking score is computed as follows: ranking score =
response code+1
(response time) × 100. The response codes higher than or equal to 400 corre-

spond to failed tests; at the same time, a lower response time implies a higher
priority of the test. As result, the higher the value of the ranking score, the
higher the priority of the considered test.

Results. The output of the Learning-to-Rank algorithms are ordered lists of
test IDs (column “1”). Testers should run the tests according to this list in order

5https://github.com/FudanSELab/train-ticket
6https://github.com/uDEVOPS2020/uTest
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to expose failures (both as failing status code and as high response time) earlier.

Code. Python code files/scripts to: i) generate training and test sets, ii) train
and execute the Lerning-to-Rank techniques, iii) build the ordered list of testIDs.

Prerequisites:
Python (version >3), JVM/JRE (version > 1.8).
Libraries: RankLib library7

Commands:
Run the “sh ranking.sh” script to perform the ranking of the selected test
dataset.

4.2 Use Case for functionality 2

The “use case 2” folder of the delivered package contains the code and data
to run the cause-effect characterization example.
Dataset. MSA medians RT.csv. This is the dataset used as illustrative exam-
ple for this use case. It is derived by running a workload, as described below,
on a well-known open-source benchmark for microservice architecture (MSA),
named Train Ticket 8. The application simulates a train ticket booking sys-
tem, composed of 41 microservices communicating to each other via REST over
HTTP. Train ticket is polyglot (e.g., Java, golang, Node.js, etc).

The dataset has the following columns:

| Reponse Time median MS1 | ... | Response Time median MSn |

Each row is a sample, gathered every 5 seconds.

Workload generation. The dataset is generated by stressing the system with
a workload. The folder contains the files/scripts to: i) gather monitoring data,
ii) parse the raw monitoring data and creating the dataset. The ”locust.py” file
customize the tool Locust 9, which we exploited to generate the load. Locust is
a distributed, open-source load testing tool that simulates concurrent users in
an application for each benchmark. We customize the workload to reflect the
behavior of real users. In total, we run on average 8 requests per second for 10
minutes, with 10 active users.

Code. To derive the causal structure, run the Python notebook
(MSA causal model.ipynb) to apply one of the algorithms for causal structure
discovery and create a causal model. Then, the SEM model can be obtaiend by

7Dang, V. “The Lemur Project-Wiki-RankLib.” Lemur Project,[Online]. Available at
http://sourceforge.net/p/lemur/wiki/RankLib

8https://github.com/FudanSELab/train-ticket
9https://locust.io/
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running the Sem.java code.

Prerequisites:
Python (version >3), JVM/JRE (version > 1.8), Locust (used with version
2.8.6).
Libraries: py causal10. This is directly cloned in the notebook code, there is
no need to clone and load it.
tetrad-gui-7.1.0-launch.jar (add this library to the build when running
Sem.java) – the library is from Tetrad11.

Commands:
You can run the MSA causal model.ipynb notebook.
You can then run the java code, once added the tetrad library to the build
path: java Sem.java <path-to-file/filename>.csv

The example dataset file is MSA medians RT.csv located in the “Use Case
2/dataset” folder, which is the same suggested in the MSA causal model note-
book.

Results. The results will be both in the form of Causal Graph (a Directed
Acyiclic Graph – DAG) and in a textual form, both representing the relations
between microservices in terms of response times (which response time is likely
to cause any other). The types of relations (with the associated probability)
can be:

A −− > B. A is a cause of B. It may be a direct or indirect cause that may
include other measured variables. Also, there may be an unmeasured confounder
of A and B. It also implies that B is not a cause of A.
A < − > B. There is an unmeasured confounder (call it L) of A and B. There
may be measured variables along the causal pathway from L to A or from L to
B. It is also implied that A is not a cause of B and B is not a cause of A.
A o− > B. Either A is a cause of B (i.e, A −− > B) or there is an unmeasured
confounder of A and B (i.e, A < − > B) or both. It implies that B is not a
cause of A.
A o−o B. Exactly one of the following holds: A is a cause of B; B is a cause of
A; there is an unmeasured confounder of A and B.

The Structural Equation Model (SEM) expresses, for any cause-effect pair, how
much of the effect is explained by a unit variation of the cause. This allows
discovering the relations between microservices, in terms of response time, useful
for design and testing.

10https://github.com/bd2kccd/py-causal
11https://www.tetradcausal.app/
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4.3 Use Case for functionality 3

The “use case 3” folder of the delivered package contains the code and data
to run the anomaly detection and Root Cause Analysis (RCA) example.

Dataset. ex 10m spike 30s 10-150 DT.csv. This is the dataset used as illustra-
tive example for this use case. It is derived by running a workload, as described
below, on a well-known open-source benchmark for microservice architecture
(MSA), named Train Ticket12. The application simulates a train ticket booking
system, composed of 41 microservices communicating to each other via REST
over HTTP. Train ticket is polyglot (e.g., Java, golang, Node.js, etc).

The dataset has the following columns:

|Container1 CPU usage| ... |ContainerN CPU usage|Container1 Memory

usage| ... |ContainerN Memory usage|

Each row is a sample every 5 seconds.

Workload generation. The dataset is generated by stressing the system with
a workload. The folder contains the files/scripts to: i) gather monitoring data,
ii) parse the raw monitoring data and creating the dataset. The ”locust.py”
file customize the tool Locust13, which we exploited to generate the load. Locust
is a distributed, open-source load testing tool that simulates concurrent users
in an application for each benchmark. We customize the workload to reflect the
behavior of real users. In total, we run on average 8 requests per second for 10
minutes, with 10 users. The run configuration models a ”spike” in which the
load is increased to 150 users after 5 minutes for 30 seconds in order to see if
any anomaly is detected.

Code. To run anomaly detection on all microservices data, run the anomaly.R
script, as described below; then, if any anomlay is detected, you can run the
MuTE.py script to diagnose the possible root cause by assessing any temporal
cause-effect relation between microservices (CPU and memory).

Prerequisites:

Python (version >3), JVM/JRE (version > 1.8), Locust (used with version
2.8.6).

Libraries: Anomalize14, IDTxl15. For IDTxl, follow the instructions at
https://github.com/pwollstadt/IDTxl/wiki/Installation-and-Requirements

to install it.

12https://github.com/FudanSELab/train-ticket
13https://locust.io/
14R code, https://cran.r-project.org/web/packages/anomalize/
15 https://github.com/pwollstadt/IDTxl
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Commands:

./anomaly.R <dataset filename>.csv #for anomaly detection, output a jpg
image

./MuTE.py <dataset filename>.csv#for modelling relation between microser-
vices and the anomaly

The example dataset file is ex 10m spike 30s 10-150 DT.csv located in the
“Use Case 3/dataset’ folder.

Results. The anomlay detection script generates the graphical representation
of possible anomalies detected in any container-level metric; the result of Multi-
variate Transfer Entropy (MuTE) applied to the same series. The MuTE output
are both in textaul form and as a graph (i.e., the network) representing which
time series transfer more entropy to which other and at which significance.
Given a target microservice that experienced anomalies (in CPU or memory
data) and for which you want to diagnose the root cause, the graph tells which
other microservice is more likely the cause of the anomaly (i.e., which trans-
fer more entropy, and the corresponding time lag between the time series that
maximize the transfer).

4.4 Use Case for functionality 4

The “use case 4” folder of the delivered package contains the code and data
to run the feature stability analysis in Just-In-Time Defect Prediction (JIT-DP)
example.

Dataset. This folder contains the dataset used as illustrative example for
this use case. The dataset consists of commit data for 6 open source applications.
It is cloned from a JIT-DP research work repository.16 As in [1], the generation
procedure cosists of data extraction through python scripts, and labelling by
the SZZ algorithm.

Each subject dataset has the following columns:

id | date | ns | nd | nf | entropy | la | ld | lt | fix | ndev | age

| nuc | exp | rexp | sexp

Each row refers to a commit.

Code. Python code files/scripts to: i) perform defect prediction on a dataset
in the same format as the Dataset’s folder files; this includes code for training

16https://github.com/ZZR0/ISSTA21-JIT-DP
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the Random Forest and Logistic Regression models. Feature stability is com-
puted according to the algorithm described in [2]. ii) Random Forest algorithm
represent the worst case, in which each tree considers different features at each
execution; Logistic Regression represents the best case since the selected fea-
tures (the ones with a positive coefficient) are very often the same.

To reproduce: run the artifact RF.py and artifact LR.py scripts.

Prerequisites: Python (version >3)

Commands:

Run the python artifact RF.py script to run the feature stability on the Ran-
dom Forest model.
Run the python artifact LR.py script to run the feature stability on the Lo-
gistic Regression model.

Results. The output reports the feature importance of each feature for the con-
sidered model (RF: Random Forest, LR: Logistic Regression), and the feature
stability value computed as in [2]. This can be useful to assess which metrics
are the best predictors not only from the accuracy point of view, but from the
stability perspective.
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